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LElTER TO THE EDITOR 

The Potts model and the Beraha numbers 

P P Martin 
Department of Theoretical Physics, University of Manchester, Manchester M13 9PL, U K  

Received 29 October 1986 

Abstract. We show explicitly that the representation of a finite-dimensional algebra associ- 
ated with the largest eigenvalues of the four-site transfer matrix for the q-state Potts model 
is reducible at the first irrational Beraha q value. We show how this fits into a pattern of 
reducibility at the Beraha values so that the asymptotic dimensionality of representations 
for large lattice width n is 9". For other q values the asymptotic dimensionality is 4" 
( q > 4 )  or K" with K > q  ( O c q i 4 ) .  

Several authors have recently observed (directly or indirectly) that the Potts models 
associated with the leading discrete infinity of conformal field theories in two 
dimensions are those with the Beraha q values (Friedan et ai 1984, Dotsenko and 
Fateev 1984, Kuniba et a1 1986). The latter authors, in particular, noted an apparent 
connection with the properties of a finite-dimensional von Neumann algebra (see also 
Jones 1983, 1985). This algebra is associated with the transfer matrix for the Potts 
model (Baxter 1982). In a recent letter (Martin 1986a and later corrigendum) we 
showed how to write down the representation of this algebra for the largest eigenvalue 
of the transfer matrix. We now show how this approach can indeed pick out the 
Beraha values, since the representation is reducible at these values. This leads to a 
distinctive dimensionality for the resultant irreducible representation (it is easy to see, 
for instance from Martin (1986b), that this dimensionality has a strong bearing on the 
form of the transfer matrix eigenvalues at all temperatures). 

A representation for the operators { Uz,  i = 1, . . . ,2n - l }  satisfying 

uf = q ' / =  U, 

UIUl*, ut = U1 (1 )  

UIUJ = UJU1 / i  -j l* 2 

is given in Martin (1986a). The representation dimension C,, is given by 

c, = 1 

4n - 2  
n + l  C,, =- C*-,  

and the representation has the property 

R =  n Ui#O. 
i odd 
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When q = 4 the operators 

generate the permutation group SSn (see also Temperley 1986). By considering all 
possible partitions of Young tableaux of two equal rows T[""] into T["-""-"l and 
T[""] it is then possible to see that the representation is irreducible. Since the 
representation is, up to overall constants, polynomial in q it then remains irreducible 
for finite n and general q, except possibly at a finite set of q values. 

In Martin (1986a) we showed that at n = 3 , 5  this set includes some of the points 
( q  = 1 , 2 , 3 )  where Temperley's (1986) generalised Young tableaux construction breaks 
down. These are, in full, 

q = 4 cos( y) for any m = 1, .  . . , r-1; r = 2 , .  . . , n. (5)  

We conjectured that the representation might reduce at these points for general n, 
although the mechanism was unclear since all the other q values involved are non- 
integer. 

We can clarify this issue by reference to the n = 4  case. Here there exists a basis 

UI = diagonal(1, 1, 1,0,0, 1, 0, 1 ,  0, 0, 0, 0, O , O ) q ' / '  

U, =diagonal( 1, 1 ,  0, 0, 1,0, 1, 0, 0, 0, 1,0,0,0)q"2 

U, = diagonal( 1,0, 1, 1,0,0, 1,0, 1,0,0,0,0,  0 ) q ' l 2  

1 1 
1 

1 1 1 
-1 q -1  

1 1  
1 1  

1 1 1 
1 

4 - 2  q - 2  4 - 2  

\ 

1 

1 
1 

1 q - 3  q - 2  1 

q - 2  q - 2  q - 2  
1 1 q - 3  q - 2  1 

1 1 1 q - 2  q - 2  1 
q - 1  q-1  

a a 0 



letter to the Editor L40 1 

U, = q - l / *  

1 

' 1  1 \ 
q - 1  q - 1  

1 1 1 
1 1 

1 1 1 

1 1 1 
1 1 1 

q - 2  q - 2  q - 2  
1 1  q - 3  q - 2  1 
1 1  q - 3  q - 2  1 

4 -2  q - 2  4 - 2  
q - 1  q - 1  

1 1 1  q - 2  q - 2  1 

1 

q - 1  
a 

a a 01 

1 1 

1 1 

k = l  n + l  
(7) 

where [p] is the integer part of p (the roots are q = (3 *&)/2). The generalisation to 
larger n is indicated in the form of (7), which is always a polynomial in q with integer 
coefficients. 

We denote the dimension of the irreducible representation at a given n for the set 

q=4cos*  - , M = 1 , .  * .  , [ ( r - l ) /21}  I (:"> 
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by ‘C,. Then using results from Martin (1986a) and Blote and Nightingale (1982) it 
can be seen that the function 

m 

B,(x)= 1 +  c rC,Xn 
n = l  

(9) 
j = l  r -1  I =  1 

for r = 3,4,6 and CO (an integral familiar from the solution of the Ising model is useful 
in the latter case-see McCoy and Wu (1973)). For all integer r 3 3 this function has 
the property that ‘Cn deviates from “C, at r = n - 1 (cf equation ( 5 ) ) ,  and, for example, 
’C4= 13 as required. By choosing an appropriate basis in the critical (r-1)-state 
Andrews-Baxter-Forrester model (Andrews er al 1984) it is easy to extract representa- 
tions with R # 0 which have the dimensions given in (9). These are therefore at least 
an upper bound on the true irreducible dimensions (see Martin (1986a) and note that 
the operators U are temperature independent). Furthermore the asymptotic behaviour 
of ‘C, for large n is then 

‘C, - [ 4 COS2( 33: 
Equation (9) gives the only suitable function with monotonic convergence to this 
behaviour. 

It can then be seen (again using Martin (1986a) and Andrews et a1 (1984)), with 

ei = q-’I2 vi (11) 

and rei denoting the above (irreducible) representations of ei for q = 4 cos2( r / r ) ,  that 
we have 

‘Cn-I 1 Tr rei = - + -  
‘C, n-m 

(Tr 1 = 1). Thus in the thermodynamic limit these representations realise Jones’ (1983) 
trace condition for integer r a 3 .  

We have briefly indicated how the Beraha Potts models are picked out in the 
statistical mechanical context, and how this can provide a realisation for Jones’ trace 
condition. It also provides an intriguing framework for examining the connection 
between the von Neumann algebra and the Virasaro algebra associated with conformal 
symmetry in two dimensions (cf Kuniba et a1 1986). 

I would like to thank David Holling for useful discussions. 
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